Abstract

In this work, we present the first experimental results on a Schottky photodetector based on Silicon Carbide (SiC) and Graphene (Gr) designed to operate in the visible spectral range. While SiC has been extensively investigated for various applications in the ultraviolet domain, there are only a few works in the visible range, where SiC exhibits negligible optical absorption. To overcome such intrinsic limit of SiC, we exploit the properties of a single layer of Gr to enhance, significantly, the photodetection performance of the device operating, in our experiments, at the wavelength of λ=633 nm. From the current-voltage (I-V) characteristics, a series resistance of 3.7 kΩ, an ideality factor of 8.4, and the zero-bias Schottky barrier height of 0.755 eV have been calculated. Finally, the internal responsivity, as function of the reverse bias applied to the device, has been measured demonstrating a maximum value exceeding 1 mA/W at -5V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call