Abstract

With its two degenerate valleys at the Fermi level, the band structure of graphene provides the opportunity to develop unconventional electronic applications. Herein, we show that electron and hole quasiparticles in graphene can be filtered according to which valley they occupy without the need to introduce confinement. The proposed valley filter is based on scattering off a recently observed line defect in graphene. Quantum transport calculations show that the line defect is semitransparent and that quasiparticles arriving at the line defect with a high angle of incidence are transmitted with a valley polarization near 100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.