Abstract

We propose an attosecond strong optical field interferometry in graphene which reveals the chirality of graphene without employing a magnetic field. A circularly polarized optical pulse with strong amplitude and femtosecond time scale causes the electron to circle in the reciprocal space through which it accumulates the dynamic phase along the closed trajectory as well as the nontrivial geometric phase known as Berry’s phase. The resulting interference fringes carry rich information about the electronic spectra and interband dynamics in graphene near the Dirac points. Our findings hold promises for the attosecond control and measurement of electron dynamics in condensed matters as well as understanding the topological nature of the two-dimensional Dirac materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.