Abstract

Insufficient flexibility of existing approaches to controlling the thermal transport in atomic monolayers limits their capability for use in many applications. Here, we examine the means of electrode doping to control the thermal flux Q due to phonons propagating along the atomic monolayer. We found that the frequency of the electron-restricted phonon scattering strongly depends on the concentration nC. of the electric charge carriers, established by the electric potentials applied to local gates. As a result of the electrode doping, nC is increased, causing a sharp rise in both the electrical conductivity and Seebeck coefficient, while the thermal conductivity tumbles. Therefore, the effect of the thermal transistor improves the figure of merit of nanoelectronic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.