Abstract

Using ab initio density functional theory methods, the optimized structure of the single-, double-, and triple-layered graphene nanoribbons with different stacking orders and edges is calculated along with their Raman spectrums. For each case studied, graphene is found to be a potential source of vibrational signals in the terahertz region of the spectrum when molecules or another layer are adsorbed in the surface; this effect is independent of the hydrogen presence at the edges, and the stacking order. The visible low-frequency modes increase with the addition of graphene layers, and the number of modes may be influenced by the type of edges. The monolayer shows better performance due to the lower number of vibrational modes. The nanoribbon with fewer modes at the terahertz range is used to show a potential application of graphene acting as a sensor of single molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.