Abstract
In this paper we discuss the effect of hydrogen and methane content during low-pressure chemical vapor deposition (LPCVD) of graphene on inductively heated copper foils. By increasing the H2/CH4 ratio by a factor of 5 from 25 to 125, different graphene morphologies ranging from dendritic fractals to compact hexagonal islands are obtained. In addition, increasing the hydrogen concentration allows the nucleation rate to be slowed down by a factor of ∼10 thereby high-quality regular hexagonal graphene single crystals of significant size of 0.1 mm are found. From these measurements, we estimate the activation energy for graphene nucleation in low-pressure CVD (2 eV) and propose a phenomenological law for graphene nucleation. As compared to conventional CVD methods, considerable advantages of inductive heating are outlined, and some fundamental aspects of this approach are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.