Abstract

A platinum free counter electrode for dye sensitized solar cells was developed using graphene platelets (GP) supported nickel nanoparticles (NPs) as the active catalyst. Few layered GP were prepared by chemical oxidation of graphite powders followed by thermal exfoliation and reduction. The nanoparticles of nickel were deposited directly onto the platelets by pulsed laser ablation. The composite electrodes of GP and Ni nanoparticles (GP-Ni) thus obtained showed better performance compared to conventional Pt thin film electrodes (Std Pt) and unsupported Ni NPs. The efficiencies of the cells fabricated using GP-Ni, Std Pt and Ni NP CEs were 2.19%, 2% and 1.62%, respectively. The GP-Ni composite solar cell operated with an open circuit voltage of 0.7 V and a fill factor of 0.6. Electrochemical impedance spectroscopy using the I(3)(-)/I(-) redox couple confirms lower values of charge transfer resistance for the composite electrodes, 4.67 Ω cm(2) as opposed to 7.73 Ω cm(2) of Std Pt. The better catalytic capability of these composite materials is also reflected in the stronger I(3)(-) reduction peaks in cyclic voltammetry scans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.