Abstract

Single-atom catalysts (SACs) have become an emerging frontier trend in the field of heterogeneous catalysis due to their high activity, selectivity and stability. SACs could greatly increase the availabilities of the active metal atoms in many catalytic reactions by reducing the size to single atom scale. Graphene-supported metal SACs have also drawn considerable attention due to the unique lattice structure and physicochemical properties of graphene, resulting in superior activity and selectivity for several chemical reactions. In this paper, we review recent progress in the fabrications, advanced characterization tools and advantages of graphene-supported metal SACs, focusing on their applications in catalytic reactions such as CO oxidation, the oxidation of benzene to phenol, hydrogen evolution reaction, methanol oxidation reaction, oxygen reduction reaction, hydrogenation and photoelectrocatalysis. We also propose the development of SACs towards industrialization in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.