Abstract

Graphene sheets decorated with SnO2 nanoparticles (RGO–SnO2) were prepared via a redox reaction between graphene oxide (GO) and SnCl2. Graphene oxide (GO) was reduced to graphene (RGO) and Sn2+ was oxidized to SnO2 during the redox reaction, leading to a homogeneous distribution of SnO2 nanoparticles on RGO sheets. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show uniform distribution of the nanoparticles on the RGO surface and high-resolution transmission electron microscopy (HRTEM) shows an average particle size of 3–5 nm. The RGO–SnO2 composite showed an enhanced photocatalytic degradation activity for the organic dye methylene blue under sunlight compared to bare SnO2 nanoparticles. This result leads us to believe that the RGO–SnO2 composite could be used in catalytic photodegradation of other organic dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.