Abstract

TiO2-RGO (TG) nanocomposite applied as photocatalysts have been synthesized via a facile low-temperature wet chemistry process, during which the reduction of graphene oxide (RGO) and the growth of titanium dioxide (TiO2) nanoparticles on the RGO nanosheets are achieved simultaneously. RGO role in TG nanocomposites as photocatalysts were analyzed in methylene blue photocatalytic degradation under UV and solar irradiation. The TG nanocomposites were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and transmission electron microscopy. The photocatalytic efficiency of the TG-30 sample under UV and TG-45 solar irradiation was ∼7 and ∼5 times that of pristine TiO2, respectively. The enhancement of the photocatalytic activity with UV irradiation in TG was attributed to the high separation efficiency of photoinduced electron–hole pairs, while the enhancement of photocatalytic activity with solar irradiation in the TG was attributed to RGO role, acted as a photosensitizer and a charges separator, simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.