Abstract
Multiscale modelling and simulations, based on molecular dynamics (MD) and object-oriented finite element method (OOFEM), are two important simulation tools to predict property enhancement of polymer nanocomposites for designing armor-type components in requisite applications. In this study, MD simulation software (Materials Studio) is used to develop 0.5%, 1%, 2%, 3%, and 4% (by weight) single-layer graphene (SLGR)-reinforced thermoplastic polyurethane (TPU) nanocomposites to find out their mechanical properties (mainly elastic moduli and Poisson’s ratio) using constant strain method. OOFEM simulation software (OOF2) is used for mechanical characterization of 0.5%, 3%, and 4% (by weight) SLGR-reinforced TPU nanocomposites from scanning electron microscopy–generated microstructures. Properties obtained from both the simulations are compared with experimental results to know the nanoreinforcement effect in atomic level as well as in microlevel in the nanocomposites. It is observed that the results based on OOF2 simulation are closer to the experimental results compared with the results obtained from MD simulation in this multiscale modelling and simulation study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.