Abstract

Photodynamic therapy (PDT), as a novel technique, has been extensively employed in cancer treatment by utilizing reactive oxygen species (ROS) to kill malignant cells. However, most photosensitizers (PSs) are short of ROS yield and affect the therapeutic effect of PDT. Thus, there is a substantial demand for the development of novel PSs for PDT to advance its clinical translation. In this study, we put forward a new strategy for PS synthesis via modifying graphene quantum dots (GQDs) on the surface of rare-earth elements doped upconversion nanoparticles (UCNPs) to produce UCNPs@GQDs with core-shell structure. This new type of PSs combined the merits of UCNPs and GQDs and produced ROS efficiently under near-infrared light excitation to trigger the PDT process. UCNPs@GQDs exhibited high biocompatibility and obvious concentration-dependent PDT efficiency, shedding light on nanomaterials-based PDT development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.