Abstract

Non-invasive temperature sensing is necessary for the analysis of biological processes occurring in the human body including cellular enzyme activity, protein expression, and ion regulation. Considering that a variety of such biological processes occur at the microscopic scale, a novel mechanism allowing for the detection of the temperature changes in microscopic environments is desired. One-dimensional graphene quantum dots can serve as agents for such detection: they are promising non-invasive probes that because of their 2-5 nm size and optical sensitivity to temperature change enable sub-cellular resolution imaging. Both biocompatible bottom-up synthesized nitrogen-doped graphene quantum dots and quantum dots produced from reduced graphene oxide via top-down approach exhibit temperature-induced fluorescence variations. This response observed for the first time is utilized for deterministic temperature sensing in bulk suspension as well as inside mammalian cells. Distinctive quenching of quantum dot fluorescence by up to 19.8% is observed, in a temperature range from 25℃ to 49℃, in aqueous solution, while the intensity is restored to the original values as the temperature decreases back to 25℃. A similar trend is observed in vitro in HeLa cells as the cellular temperature is increased from 25℃ to 41℃. Our findings suggest that the temperature-dependent fluorescence quenching of bottom-up and top-down-synthesized graphene quantum dots can serve as a non-invasive, reversible, and deterministic mechanism for temperature sensing in microscopic sub-cellular biological environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.