Abstract

The fabrication of a superior-performance ultraviolet (UV) photodetector utilizing graphene quantum dots (GQDs) as a sensitization agent on a ZnO-nanorod/GaN-nanotower heterostructure has been realized. GQD sensitization displays substantial impact on the electrical as well as the optical performance of a heterojunction UV photodetector. The GQD sensitization stimulates charge carriers in both ZnO and GaN and allows energy band alignment, which is realized by a spontaneous time-correlated transient response. The fabricated device demonstrates an excellent responsivity of 3.2 × 103 A/W at -6 V and displays an enhancement of ∼265% compared to its bare counterpart. In addition, the fabricated heterostructure UV photodetector exhibits a very high external quantum efficiency of 1.2 × 106%, better switching speed, and signal detection capability as low as ∼50 fW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.