Abstract

Graphene quantum dot (GQD) is the most recent addition to the nanocarbon materials family which promises a wide spectrum of novel applications. On the other hand, bimetallic phosphides are emerging for their unique potentials for electrocatalysis. Herein, we have demonstrated the fabrication of heterostructured nanosheet arrays of ternary nickel-cobalt phosphide (NiCo2P2) and GQD hybrid (NCP/G NSs) and the use as bifunctional catalysts for overall water splitting in alkaline medium. NCP/G NSs exhibit excellent electrocatalytic activity towards hydrogen evolution reaction (reaching 100 mA cm−2 at an extremely low overpotential of 119 mV), superior to any other non-noble metal catalyst. Furthermore, an electrolyzer equipped with two identical NCP/G NS electrodes at an exceptionally small amount of catalyst loading (0.31 mg cm−2) is able to achieve efficient overall water splitting (10 mA cm−2 at 1.61 V) with high stability. The careful comparison with NiCo2P2 nanowires (NCP NWs) synthesized under the same conditions without GQDs (in terms of electrocatalytic performance, atomic and electronic structures, and electrochemical properties) reveals the mechanistic roles of GQDs in morphology control and performance enhancement. In addition, the performance comparison with ternary nickel-cobalt oxide (NiCo2O4) and GQD hybrid (NCO/G NSs) suggests the advantage of bimetallic phosphides over oxide counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.