Abstract

Herein, graphene quantum dots (GQDs) were introduced as a novel and safe crosslinker for carboxymethyl cellulose to make biodegradable and biocompatible hydrogels. The casting was used as a simple method for the preparation of the CMC/GQDs films. Effects of the GQDs percentage on the physicochemical properties of the films were studied, and several characterizations were performed including Fourier transform infrared spectroscopy, UV–vis spectroscopy, scanning electron microscopy, gas permeability, and mechanical testing analysis. The CMC/GQDs showed a pH-sensitive swelling and degradation with improved tensile strength. Fluorescent properties were also studied to evaluate the potential of the prepared CMC/GQDs nanocomposite for fluorescent bioimaging applications. Drug delivery property of the CMC-GQDs were studied using doxorubicin (DOX) as a model anticancer drug. Cytotoxicity studies were carried out using human colon adenocarcinoma HT29 cells. The prepared CMC/GQDs exhibited biocompatibility and pH-sensitive drug delivery behavior which proposed the prepared nanocomposite hydrogel has the potential to be used as a pH-triggered site-specific drug delivery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call