Abstract

A flexible piezoresistive sensor was developed as an accelerometer based on Graphene/PVDF nanocomposite to detect low-frequency and low amplitude vibration of industrial machines, which may be caused due to misalignment, looseness of fasteners, or eccentric rotation. The sensor was structured as a cantilever beam with the proof mass at the free end. The vibration caused the proof mass to accelerate up and down, which was converted into an electrical signal. The output was recorded as the change in resistance (response percentage) with respect to the acceleration. It was found that this accelerometer has a capability of detecting acceleration up to 8 gpk-pk in the frequency range of 20 Hz to 80 Hz. The developed accelerometer has the potential to represent an alternative to the existing accelerometers due to its compactness, simplicity, and higher sensitivity for low frequency and low amplitude applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.