Abstract

Graphene has promising applications in agriculture and forestry. In the current study, six different concentrations of graphene (0mg/L, 0.01mg/L, 0.10mg/L, 1.00mg/L, 10.00mg/L, and 100.00mg/L) were used to investigate its effect on the growth and development of V. angularis plants in soil culture. The results showed that the group treated with 1.00mg/L graphene (G-1) had significantly increased plant height (19.86%), stem diameter (24.33%), and leaf area (13.69%), compared to the control group (CK). Moreover, all concentrations of graphene had positive effects on the total root length, total root surface area, and the number of root tips of V. angularis. Compared to the CK group, the G-1 group had significantly increased leaf water potential (37.89%), leaf conductivity (2.25%), and SOD, POD, and CAT activities (47.67%, 35.22%, and 199.3%, respectively). The G-1 group also showed improved leaf net photosynthetic rate, chlorophyll content, and soluble sugar content (51.28%, 24.25%, and 38.35%, respectively), compared to the CK group. Additionally, 1.00mg/L graphene led to a 23.88% increase in the podding rate and a 17.04% increase in the yield of V. angularis plants. The rhizosphere soil of V. angularis treated with 1.00mg/L graphene had a 25.14% increase in hydrolyzable nitrogen content and a 66.67% increase in available phosphorus content. RNA-seq data indicated that 1.00mg/L graphene induced the expression of photosynthesis and nitrogen transmembrane transport genes, including ATP synthase subunit b, photosystem I reaction center subunit XI, photosystem I reaction center subunit IV A, ferredoxin, and psbP-like protein 1, as well as genes for photosynthesis antenna proteins, glutamine synthetase, glutamate dehydrogenase 1, cyanate hydratase, protein fluG-like, and NRT1/PTR family, suggesting that graphene promoted the growth and development of V. angularis by enhancing the photosynthesis and nitrogen metabolism processes in V. angularis plants. Our results indicated that a suitable concentration of graphene could significantly promote the growth of V. angularis plants in soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call