Abstract

Perchlorate (ClO(4)(-)) contamination is a widespread concern affecting water utilities. In the present study, functionalized graphene sheets were employed as the scaffold to synthesize a novel graphene-polypyrrole (Ppy) nanocomposite, which served as an excellent electrically switched ion exchanger for perchlorate removal. Scanning electron microscopy and electrochemical measurements showed that the 3D nanostructured graphene-Ppy nanocomposite exhibited a significantly improved uptake capacity for ClO(4)(-) compared with Ppy film alone. X-ray photoelectron spectroscopy confirmed the uptake and release process of ClO(4)(-) in graphene-Ppy nanocomposite. In addition, the presence of graphene substrate resulted in high stability of graphene-Ppy nanocomposite during potential cycling. The present work provides a promising method for large scale water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.