Abstract

We propose a simple way to create tunable plasmonic cavities in the infrared (IR) range using graphene films suspended upon a silicon carbide (SiC) grating and present a numerical investigation, using the finite element method, on the absorption properties and field distributions of such resonant structures. We find at certain frequencies within the SiC reststrahlen band that the structured SiC substrate acts as a perfect reflector, providing a cavity effect by establishing graphene plasmon standing waves. We also provide clear evidence of strong coupling phenomena between the localized surface phonon polariton resonances in the SiC grating with the graphene surface plasmon cavity modes, which is revealed by a Rabi splitting in the absorption spectrum. This paves the way to build simple plasmonic structures, using well-known materials and experimental techniques, that can be used to excite graphene plasmons efficiently, even at normal incidence, as well as explore cavity quantum electrodynamics and potential applications in IR spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.