Abstract
Superparamagnetic manganese ferrite (MnFe2O4) nanoparticles have been deposited on graphene oxide (GO) by the thermal decomposition of manganese (II) acetylacetonate and iron (III) acetylacetonate precursors in triethylene glycol. The resulting GO/MnFe2O4 nanohybrids show very low cytotoxicity, negligible hemolytic activity, and imperceptible invivo toxicity. Invitro and invivo magnetic resonance imaging experiments demonstrate that GO/MnFe2O4 nanohybrids could be used as an effective T2 contrast agent. The strong optical absorbance in the near-infrared (NIR) region and good photothermal stability of GO/MnFe2O4 nanohybrids result in the highly efficient photothermal ablation of cancer cells. GO/MnFe2O4 nanohybrids can be further loaded with doxorubicin (DOX) by π-π conjugateeffect for chemotherapy. DOX release from GO/MnFe2O4 is significantly influenced by pH and can be triggered by NIR laser. The enhanced cancer cell killing by GO/MnFe2O4/DOX composites has been achieved when irradiated with near-infrared light, suggesting that the nanohybrids could deliver both DOX chemotherapy and photothermal therapy with a synergistic effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.