Abstract
Melittin (MEL), the primary active component of bee venom, has recently emerged as a promising cancer chemotherapeutic agent. However, the instability and rapid degradation of MEL is a significant challenge in practical therapeutic applications. In the present study, graphene oxide (GO)-based magnetic nanocomposites (PEG-GO-Fe3O4) were prepared and adopted as the drug delivery vehicles of MEL, and the anticancer effects of PEG-GO-Fe3O4/MEL complexes on human cervical cancer HeLa cells were studied. PEG-GO-Fe3O4 exhibited a series of unique physical and chemical properties resulting in multiple interactions with MEL, and ultimately the release of MEL. In vitro experiments showed that PEG-GO-Fe3O4/MEL not only distinctly enhanced the inhibition effect on HeLa cells, but also induced pore formation in the cell membrane that ultimately led to cell lysis. In this newly developed drug delivery system, PEGylated GO plays the role of a MEL protector while Fe3O4 nanoparticles act as magnetic responders; therefore active MEL can be released over a long period of time (up to 72 h) and maintain its inhibition effect on HeLa cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.