Abstract

Nitrate pollution in fresh water is becoming increasingly serious. In this study, the effects of temperature and graphene oxide materials on the potential functions of denitrification communities in lake sediments were investigated by metagenome. The addition of graphene oxide significantly affected the abundance of denitrification genes such as Nap, Nos, and enhanced the contribution of Pseudomonas, making low temperature and material addition conducive to the denitrification process. Module network implied that low temperature increased the centrality of denitrification in community functions. At low temperatures, graphene oxide enhanced community anabolism by stimulation organic carbon consumption and regulating the gene abundance in the citric acid cycle and the semi-phosphorylation Entner-Doudoroff, thus possibly stimulating extracellular polymeric substances (EPS) synthesis and secretion. In addition, graphene oxide may also regulate the transfer of reducing electrons from NADH to denitrifying enzymes by affecting the gene abundances of complex I and complex IV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.