Abstract

A graphene oxide sponge (GOS) is utilized for the first time as a nanofiller (NF) in printable electrolytes (PEs) based on poly(ethylene oxide) and poly(vinylidene fluoride) for quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The effects of the various concentrations of GOS NFs on the ion diffusivity and conductivity of electrolytes and the performance of the QS-DSSCs are studied. The results show that the presence of GOS NFs significantly increases the diffusivity and conductivity of the PEs. The introduction of 1.5 wt % of GOS NFs decreases the charge-transfer resistance at the Pt-counter electrode/electrolyte interface ( Rpt) and increases the recombination resistance at the photoelectrode/electrolyte interface ( Rct). QS-DSSC utilizing 1.5 wt % GOS NFs can achieve an energy conversion efficiency (8.78%) higher than that found for their liquid counterpart and other reported polymer gel electrolytes/GO NFs based DSSCs. The high energy conversion efficiency is a consequence of the increase in both the open-circuit potential ( Voc) and fill factor with a slight decrease in current density ( Jsc). The cell efficiency can retain 86% of its initial value after a 500 h stability test at 60 °C under dark conditions. The long-term stability of the QS-DSSC with GOS NFs is higher than that without NFs. This result indicates that the GOS NFs do not cause dye-desorption from the photoanode in a long-term stability test, which infers a superior performance of GOS NFs as compared to TiO2 NFs in terms of increasing the efficiency and long-term stability of QS-DSSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call