Abstract
A catalyst (V-Cu-Ce-ZSM-5) was explored to simultaneously remove the SO2 and NOx from flue gas by use of the ZSM-5 molecular sieve as the carrier, V and Cu as the active components, and Ce as the additive in low temperature of 150 °C. The performance of V-Cu-Ce-ZSM-5 was evaluated for the oxidation of NO and SO2 before and after the addition of graphene oxide (GO). The results showed that V-Cu-Ce-ZSM-5@GO0.5 had the best performance at a reaction temperature of 150 °C, and the oxidation efficiency of SO2 and NO was 94.60% and 83.64%, respectively. The multiple structural characterizations (BET, SEM, Raman, XRD, and XPS) revealed that the loading of V and Cu with the additive Ce expanded the specific surface area and pore volume of ZSM-5, provided more adsorption sites for SO2 and NO, and had good desulfurization and denitration activity. The addition of GO further improved the dispersibility of active components and auxiliaries, increased the number of active sites in the reaction process, and significantly improved catalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.