Abstract

The increasing production and application of graphene oxide (GO, a popular carbon nanomaterial), makes their release into aqueous environment inevitably. The capability of GO to enhance the toxicity of background contaminants has been widely concerned. However, the effect of GO on heavy metal accumulation in fish embryos remains unclear. Here, we show that GO-promoted chromium (Cr) uptake by zebrafish embryos with multiple effects. The adsorption accelerated the aggregation and settlement of Cr6+-adsorbed GO and decreased the Cr6+ concentration in the upper water, which enhanced the interaction of chorions and contaminants (Cr6+, GO and Cr6+-adsorbed GO). In the presence of GO, the Cr content in chorions and intra-chorion embryos was increased by four times and 57% respectively, compared to that of the single Cr6+ exposure. Furthermore, GO+Cr6+ increased the oxygen consumption rates, embryonic acid extrusion rates and ATP production, induced more serious oxidative stress, and disturbed amino acid metabolism, fatty acid metabolism and TCA cycle. These findings provide new insights into the effect of GO on heavy metal bioaccumulation and toxicity during embryogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call