Abstract

A novel graphene oxide/polyester (GO/PET) composite fabric as a recyclable adsorbent was prepared via electrostatic self-assembly. The structure, morphology, and properties of the GO/PET composite fabrics were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transformed infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and contact angle (CA), respectively. The absorption property was evaluated by the absorption amount and removal efficiency of methylene blue (MB) solution on the GO/PET composite fabric. The results indicated that the absorption amount was found to be 21.80 mg/g and the removal efficiency reached 99.93 % under the experimental conditions of GO concentration of 2 mg/ml, initial concentration of 50 mg/l, and area of 64 cm2. The experimental parameters were investigated including the concentration of GO, the initial concentration of MB solutions, and adsorbent area. Simultaneously, according to a series of dynamic analysis, the absorption process revealed that the kinetics was well-described by pseudo-second-order model. This study showed that the GO/PET composite fabric could be a recyclable, efficient adsorbent material for the environmental cleanup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call