Abstract

Development of high-strength hydrogels has recently attracted ever-increasing attention. In this work, a new design strategy has been proposed to prepare graphene oxide (GO)/polyacrylamide (PAM)/aluminum ion (Al(3+) )-cross-linked carboxymethyl hemicellulose (Al-CMH) nanocomposite hydrogels with very tough and elastic properties. GO/PAM/Al-CMH hydrogels were synthesized by introducing graphene oxide (GO) into PAM/CMH hydrogel, followed by ionic cross-linking of Al(3+) . The nanocomposite hydrogels were characterized by means of FTIR, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray analysis (SEM-EDX) along with their swelling and mechanical properties. The maximum compressive strength and the Young's modulus of GO3.5 /PAM/Al-CMH0.45 hydrogel achieved values of up to 1.12 and 13.27 MPa, increased by approximately 6488 and 18330 % relative to the PAM hydrogel (0.017 and 0.072 MPa). The as-prepared GO/PAM/Al-CMH nanocomposite hydrogels possess high strength and great elasticity giving them potential in bioengineering and drug-delivery system applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.