Abstract

The preparation of carbon materials based hydrogels and their viscoelastic properties are essential for their broad application and scale-up. However, existing studies are mainly focused on graphene derivatives and carbon nanotubes, and the behavior of graphene nanoribbon (GNR), a narrow strip of graphene, remains elusive. Herein, we demonstrate the concentration-driven gelation of oxidized GNR (graphene oxide nanoribbon, GONR) in aqueous solvents. Exfoliated individual GONRs sequentially assemble into strings (∼1 mg/mL), nanoplates (∼20 mg/mL), and a macroporous scaffold (50 mg/mL) with increasing concentration. The GONR hydrogels exhibit viscoelastic shear-thinning behavior and can be shear-coated to form large-area GONR films on substrates. The entangled and stacked structure of the GONR film contributed to outstanding nanofiltration performance under high pressure, cross-flow, and long-term filtration, while the precise molecular separation with 100% rejection rate was maintained for sub-nanometer molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.