Abstract

Carbon materials possess powerful antioxidant activity that might be promising for the development of new generation treatment of cardiovascular diseases, ischemic conditions, and reperfusion injury. The present study aimed to characterize the structure of nanosized graphene oxide (GrO) sample and evaluate the antioxidant efficacy of GrO in situ models of oxidative stress widely used in pre-clinical studies. The structure and surface chemistry of the initial samples were analyzed via LDS, RAMAN, LDI, TPD-MS, and FTIR methods. The GrO showed a strong ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals and have a total antioxidant capacity. The DFT quantum-chemical calculation demonstrated the radical scavenging effect of GrO proceeding due to the physical adsorption of the free radical on the surface. For evaluation of the antioxidant effect of GrO in situ, we used the model of ischemia-reperfusion (I/R) of Langendorff isolated rat heart. We revealed that intravenous pretreatment of Wistar male rats with GrO significantly increased resistance of myocardium to I/R, improved restoration of heart function, prevented non-effective oxygen utilization, and I/R induced reactive oxygen species production in cardiac tissue. Thus, our data demonstrate the perspective of further use of GrO for the development of antiischemic therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.