Abstract

Graphene oxide (GO) is an ideal label-free sensing material with its super large specific surface area and abundant surface functional groups. Considering its insulating characteristic, the GO is suitable for optics-based heavy metal ion sensing. However, given the large surface tension of water and the hydrophilicity of GO, the agglomeration or wrinkles of GO nanosheets is usually inevitable during coating with aqueous dispersion. This reduces the accessible surface area and surface functional groups of GO, thereby degrading the sensing performance. Here, an ultra-sensitive GO functionalized tilted fiber Bragg grating (TFBG) sensor is designed to detect heavy metal ions in aqueous solutions. Firstly, a strategy of free energy manipulation is employed to avoid the wrinkles and agglomeration of GO nanosheets. In the scenario of aqueous dispersion, the GO nanosheets will wrinkle as the water droplets evaporate and shrink. In contrast, using the lower-surface-tension ethanol as the dispersant and a high-surface-energy substrate processed by oxygen plasma, the dispersion will evenly spread on the substrate instead of forming droplets. When ethanol evaporates, GO nanosheets are attached to the substrate in largest possible area to reduce the free energy of the system, by which a GO film without agglomeration or wrinkles can be obtained. Secondly, the intrinsic sensitivity of TFBG is conducive to the detection of heavy metal ions in water. Mode interference occurs between the cladding mode and the core mode in the TFBG, and the wavelength and intensity of the interference are highly sensitive to the surrounding temperature, stress, and refractive index. Combining the above characteristics, the GO functionalized TFBG is highly sensitive to Pb<sup>2+</sup>, Cd<sup>2+</sup>, and Cu<sup>2+</sup> ions in water. These heavy metal ions are adsorbed by the GO, and thus causing the effective refractive index to increase. The results show that the adsorption of heavy metal ions makes the interference peaks red-shifted in the transmission spectrum. The lowest detection limit for Pb<sup>2+</sup> and Cd<sup>2+</sup> can reach 10<sup>–10</sup> mol/L (ng/L level), and the corresponding sensitivities are 0.426 and 0.385 dB/(nmol·L<sup>–1</sup>) (2.06 and 3.43 dB/(μg·L<sup>–1</sup>)), respectively. These superior sensing performances benefit from the high specific surface area and accessible carbonyl groups of the unfolded GO, and also rely on the excellent intrinsic sensitivity of TFBG. The GO functionalized TFBG sensor has a promising potential application in environment monitoring.

Highlights

  • Considering its insulating characteristic, the Graphene oxide (GO) is suitable for optics-based heavy metal ion sensing

  • the agglomeration or wrinkles of GO nanosheets is usually inevitable during coating with aqueous dispersion

  • 传感器仍有不足之处, 所涂敷的 Graphene oxide (GO) 并未完全覆盖 优化 GO 成膜后的 GO-tilted fiber Bragg grating (TFBG) 传感器表现了出色

Read more

Summary

Introduction

吸附重金属离子后, GO-TFBG 传感器的透射光谱中的谐振峰发生红移, 这 是 由 GO 向重金属离子的电子转移导致的有效折射率变化造成的 . 对 Pb2+和 Cd2+最低检测限可达到 10–10 mol/L(ng/L 量级), 相应的灵敏度分别为 0.426 dB/(nmol/L) 和 0.385 dB/(nmol/L)(2.06 和 3.43 dB/(μg/L)). TFBG 中传输的包层模与满足相位匹配关系的纤芯模耦 合会产生谐振 [11]. 谐振峰的位置及强度会受到诸 如温度、应力以及折射率等环境因素的影响, 具有 较高的敏感度, 因此 TFBG 在传感领域已有较多 的应用 [9,10,12,13]. 重金属 Cd2+, Pb2+和 Cu2+离子与 GO 表面结合引起有效折射率变化, 从而使 TFBG 透 射光谱中的谐振峰发生移动, 实现了对重金属 相应 的灵敏度分别为可达 0.426 和 0.385 dB/(nmol/L) (2.06 和 3.43 dB/(μg/L)).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call