Abstract

Composite anion-exchange membranes with porous structures have been successfully prepared by incorporating quaternized graphene oxide (QGO) into P84 co-polyimide, and then undergoing the phase inversion, amination and quaternization processes. The membranes’ porous structures can be readily adjusted by the category of non-solvent during the phase inversion process. Large finger-like voids are present in the lower parts of the membrane cross sections by using water or 50% isopropanol aqueous solution, which facilitate the entrance of polyethylenimine chains into the membrane matrix, leading to higher degree of amination and quaternization. The incorporation of QGO does not influence the membrane morphology obviously, but can further enhance the ion exchange capacity (1.23–1.65 mmol/g) and decrease the membrane area resistance (1.6–1.9 Ω cm2).The QGO-P84 composite membranes are used in bipolar membrane electrodialysis (BMED) for the removal of boron from synthetic model solutions (Na2B4O7·10H2O, 1000 mg B/L). The finger-like pores decrease the steric resistance of boron transport, while the incorporation of QGO improves the membrane electro-chemical properties and thus the BMED performances. The separation efficiency is 76.6% after running 3 h under 30 V, the current efficiency is 94.9% and the energy consumption is 26.16 kW h/kg by using the optimal composite membrane. The BMED performances are better than those of commercial membrane CJMA-3 (separation efficiency of 51.6%, current efficiency of 81.2%, and energy consumption of 30.56 kWh/kg). Hence, the QGO-P84 composite membranes are effective for removal and recovery of boron from aqueous solution through BMED method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.