Abstract
Replicating phosphorylation-responsive ionic gates via artificial fluidic systems is essential for biomolecular detection and cellular communication research. However, current approaches to governing the gates primarily rely on volume exclusion or surface charge modulation. To overcome this limitation and enhance ion transport controllability, we introduce graphene oxide (GO) into nanochannel systems, simultaneously regulating the volume exclusion and wettability. Moreover, inspired by (cAMP)-dependent protein kinase A (PKA)-regulated L-type Ca2+ channels, we employ peptides for phosphorylation which preserves them as nanoadhesives to coat nanochannels with GO. The coating boosts steric hindrance and diminishes wettability, creating a substantial ion conduction barrier, which represents a significant advancement in achieving precise ion transport regulation in abiotic nanochannels. Leveraging the mechanism, we also fabricated a sensitive biosensor for PKA activity detection and inhibition exploration. The combined regulation of volume exclusion and wettability offers an appealing strategy for controlled nanofluidic manipulation with promising biomedical applications in diagnosis and drug discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.