Abstract

The discovery and relevant research progress in graphene oxide liquid crystals (GOLCs), the latest class of 2D nanomaterials exhibiting colloidal liquid crystallinity arising from the intrinsic disc-like shape anisotropy, is highlighted. GOLC has conferred a versatile platform for the development of novel properties and applications based on the facile controllability of molecular scale alignment. The first part of this review offers a brief introduction to LCs, including the theoretical background. Particular attention has been paid to the different types of LC phases that have been reported thus far, such as nematic, lamellar and chiral phases. Several key parameters governing the ultimate stability of GOLC behavior, including pH and ionic strength of aqueous dispersions are highlighted. In a relatively short span of time since its discovery, GOLCs have proved their remarkable potential in a broad spectrum of applications, including highly oriented wet-spun fibers, self-assembled nanocomposites, and architectures for energy storage devices. The second part of this review is devoted to an exclusive overview of the relevant applications. Finally, an outlook is provided into this newly emerging research field, where two well established scientific communities for carbon nanomaterials and liquid crystals are ideally merged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.