Abstract
The self-sustaining combustion of energetic materials, especially for propellants and pyrotechnics, is highly expected because it is related to various issues, such as combustion efficiency, ignition energy, and environmental protection. In this work, we present a method to solve the discontinuous and quenching combustion issues of energetic coordination polymer (ECP) by introducing graphene oxide (GO) into the growth of ECP. An ECP [(NiC2H4N8O4)n, Ni-BTO] constructed from Ni2+ and H2BTO [1H,1′H-(5,5′-bitetrazole)-1,1′-bis(olate)] ligand is in situ grown on GO layers. The abundant active sites of GO derived from its oxygen groups make it participate in the coordination and polymerization of Ni-BTO, thereby inducing a new kind of ECP (GO-Ni-BTO). The induction effect of GO reduces the size of Ni-BTO particles to the nanoscale and allows them to chemically bond to GO layers. The effects of different GO contents on the exothermic, combustion, and pressure-generation properties of GO-Ni-BTO are systematically investigated. Results indicate that GO-Ni-BTO ECP with 7.5 wt% GO content can solve the quenching and discontinuous combustion issues presented by micro-size Ni-BTO with a higher heat output (3265.58 J·g−1) because of the reduced size of GO-Ni-BTO, oxygen-release ability of GO, and strong thermal conductivity of reduced GO. Correspondingly, the peak pressure and pressurization rate of GO-Ni-BTO ECP with 7.5 wt% GO content are also greatly enhanced. This interesting GO-Ni-BTO ECP can be used as a heat source for the initiation of secondary explosives and as a gas generator for the propulsion system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.