Abstract

Graphene oxide (GO) is a close derivative of graphene has unlocked many pivotal steps in drug delivery due to their inherent biocompatibility, excellent drug loading capacity, and shows antibacterial, antifungal properties etc. We used a novel plant material called Gum arabic (GA) to increase the solubility of GO as well as to chemically reduce it in the solution. GA functionalized GO (fGO) exhibited increased absorption in near infra-red region (NIR) which was exploited in photothermal therapy for cancer. In order to understand the shape and size effect of GO which may affect their rheological properties, we have conjugated them with gold nanorods (GNRs) using in situ synthesis of GO@GNRs via seed mediated method. To the above conjugate, Doxorubicin (DOX) was attached at ambient temperature (28±2°C). The release kinetics of DOX with the effect of NIR exposure was also carefully studied via in vitro photothermal killing of A549 cell lines. The enhancement in NIR induced drug release and photothermal property was observed which indicates that the fGO@GNRs-DOX method is an ideal choice for chemotherapy and photothermal therapy simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call