Abstract
ABSTRACT A new adsorbent material based on graphene oxide (GO) functionalized with magnetic cobalt ferrite nanoparticles (γCoFe2O4) was synthesized via ultrasonication to remove the endocrine-disrupting-chemical bisphenol A (BPA) from aqueous solutions. The synthesized material (GO-γCoFe2O4) was characterized by TEM, SEM, DRX and FTIR analysis. Magnetization measures proved that the adsorbent had superparamagnetic characteristics that facilitated its separation from the aqueous solution. The maximum adsorption capacity obtained was 30 mg g−1 with adsorbent concentration of 1 g L−1, temperature of 55°C and natural pH of the solution. The experimental data were better adjusted to the kinetic models of pseudo-second-order and Langmuir isotherm. The thermodynamic parameters showed that the BPA adsorption on GO-γCoFe2O4 was spontaneous, exothermic and thermodynamically favourable. Desorption kinetics was performed using 50% ethanol as solvent, resulting in an equilibrium time of 4 h with better adjustment to the pseudo-second order kinetic model. The adsorbent showed a high regeneration capacity maintaining adsorptive capacity above 75% after 6 cycles of reuse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.