Abstract
We explore graphene oxide (GO) nanosheets functionalized dual-peak long period grating (dLPG) based biosensor for ultrasensitive label-free antibody-antigen immunosensing. The GO linking layer provides a remarkable analytical platform for bioaffinity binding interface due to its favorable combination of exceptionally high surface-to-volume ratio and excellent optical and biochemical properties. A new GO deposition technique based on chemical-bonding in conjunction with physical-adsorption was proposed to offer the advantages of a strong bonding between GO and fiber device surface and a homogeneous GO overlay with desirable stability, repeatability and durability. The surface morphology of GO overlay was characterized by Atomic force microscopy, Scanning electron microscope, and Raman spectroscopy. By depositing the GO with a thickness of 49.2nm, the sensitivity in refractive index (RI) of dLPG was increased to 2538nm/RIU, 200% that of non-coated dLPG, in low RI region (1.333–1.347) where bioassays and biological events were usually carried out. The IgG was covalently immobilized on GO-dLPG via EDC/NHS heterobifunctional cross-linking chemistry leaving the binding sites free for target analyte recognition. The performance of immunosensing was evaluated by monitoring the kinetic bioaffinity binding between IgG and specific anti-IgG in real-time. The GO-dLPG based biosensor demonstrates an ultrahigh sensitivity with limit of detection of 7ng/mL, which is 10-fold better than non-coated dLPG biosensor and 100-fold greater than LPG-based immunosensor. Moreover, the reusability of GO-dLPG biosensor has been facilitated by a simple regeneration procedure based on stripping off bound anti-IgG treatment. The proposed ultrasensitive biosensor can be further adapted as biophotonic platform opening up the potential for food safety, environmental monitoring, clinical diagnostics and medical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.