Abstract

The combination of copper–metal organic framework (Cu–MOF) with graphene oxide (GO) has received growing interest in electrocatalysis, energy storage and sensing applications. However, its potential as an electrochemical biosensing platform remains largely unexplored. In this study, we introduce the synthesis of GO/Cu–MOF nanocomposite and its application in the simultaneous detection of two biomarkers associated with lower respiratory infections, marking the first instance of its use in this capacity. The physicochemical properties and structural elucidation of this composite were studied with the support of XRD, FTIR, SEM and electrochemical techniques. The immunosensor was fabricated by drop casting the nanocomposite on dual screen-printed electrodes followed by functionalization with pyrene linker. The covalent immobilization of the monoclonal antibodies of the bacterial antigens of Mycoplasma pneumoniae (M. pneumoniae; M. p.) and Legionella pneumophila (L. pneumophila; L. p.) was achieved using EDC-NHS chemistry. The differential pulse voltammetry (DPV) signals of the developed immunosensor platform demonstrated a robust correlation across a broad concentration range from 1 pg/mL to 100 ng/mL. The immunosensor platform has shown high degree of selectivity against antigens for various respiratory pathogens. Moreover, the dual immunosensor was successfully applied for the detection of M. pneumoniae and L. pneumophila antigens in spiked water samples showing excellent recovery percentages. We attribute the high sensitivity of the immunosensor to the enhanced electrocatalytic characteristics, stability and conductivity of the GO–MOF composite as well as the synergistic interactions between the GO and MOF. This immunosensor offers a swift analytical response, simplicity in fabrication and instrumentation, rendering it an appealing platform for the on-field monitoring of pathogens in environmental samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.