Abstract

BackgroundThe results showed that the deciding factor is the culture medium in which the bacteria and the graphene oxide (GO) are incubated at the initial manipulation step. These findings allow better use of GO and GO-based materials more and be able to clearly apply them in the field of biomedical nanotechnology.ResultsTo study the use of GO sheets applied in the field of biomedical nanotechnology, this study determines whether GO-based materials [GO, GO-polyoxyalkyleneamine (POAA), and GO-chitosan] stimulate or inhibit bacterial growth in detail. It is found that it depends on whether the bacteria and GO-based materials are incubated with a nutrient at the initial step. This is a critical factor for the fortune of bacteria. GO stimulates bacterial growth and microbial proliferation for Gram-negative and Gram-positive bacteria and might also provide augmented surface attachment for both types of bacteria. When an external barrier that is composed of GO-based materials forms around the surface of the bacteria, it suppresses nutrients that are essential to microbial growth and simultaneously produces oxidative stress, which causes bacteria to die, regardless of whether they have an outer-membrane-Gram-negative-bacteria or lack an outer-membrane-Gram-positive-bacteria, even for high concentrations of biocompatible GO-POAA. The results also show that these GO-based materials are capable of inducing reactive oxygen species (ROS)-dependent oxidative stress on bacteria. Besides, GO-based materials may act as a biofilm, so it is hypothesized that they suppress the toxicity of low-dose chitosan.ConclusionGraphene oxide is not an antimicrobial material but it is a general growth enhancer that can act as a biofilm to enhance bacterial attachment and proliferation. However, GO-based materials are capable of inducing ROS-dependent oxidative stress on bacteria. The applications of GO-based materials can clearly be used in antimicrobial surface coatings, surface-attached stem cells for orthopedics, antifouling for biocides and microbial fuel cells and microbial electro-synthesis.

Highlights

  • The results showed that the deciding factor is the culture medium in which the bacteria and the gra‐ phene oxide (GO) are incubated at the initial manipulation step

  • The size is up to 20 μm wide, which corresponds to the size fractions of d GO, e GO-POAA and f GO-chitosan

  • It is determined whether the GO-treatedbacteria exhibit these characteristics for both Gram-positive and Gram-negative bacteria that are incubated in the environment of a nutrient

Read more

Summary

Introduction

The results showed that the deciding factor is the culture medium in which the bacteria and the gra‐ phene oxide (GO) are incubated at the initial manipulation step. These findings allow better use of GO and GO-based materials more and be able to clearly apply them in the field of biomedical nanotechnology. The results showed that the deciding factor is the culture medium in which the bacteria and the GO are incubated at the initial manipulation step, which is not discussed in previous studies [4,5,6,7,8,9,10,11,12]. Most of the GO sheets and GO-based materials exhibit good antimicrobial activity only when they have an outer-membrane-Gramnegative-bacteria or when the outer-membrane-Grampositive-bacteria are incubated with phosphate buffered saline (PBS) instead of some other nutrient

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.