Abstract

AbstractDeveloping a highly effective interlayer inserted between the sulfur electrode and separator is one of the most important issues in Li–S battery research, because this interlayer enhances the cycle performance of the Li–S battery by trapping the lithium polysulfides in the sulfur electrode. Among various interlayer materials, carbon materials such as graphene and carbon nanotubes are particularly appealing because of their high electrical conductivity. Here, a new flexible carbon membrane interlayer consisting of graphene oxide (GO) and carbon nanotubes (CNTs) is developed by a facile vacuum filtration approach to trap the lithium polysulfides in the sulfur electrode. When the GO/CNT bilayer membrane is used as an interlayer between the sulfur electrode and separator (glass fiber), the Li–S battery delivers an initial discharge capacity of 1591.56 mAh g−1 and maintains a capacity of about 1000 mAh g−1 over 50 cycles at 0.2C with a low potential difference of 150 mV. This reflects higher electrochemical performance than a GO or CNT monolayer unilaterally. This is attributed to the hydrophilic functional group of the GO layer strongly adsorbing lithium polysulfides dissolved in liquid electrolyte and the CNT layer enhancing the ion conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.