Abstract

A Q-switched erbium-doped fiber laser (EDFL) incorporating a graphene-oxide-based saturable absorber (SA) is proposed and demonstrated. The SA is fabricated by first dissolving graphene oxide nanopowder in water and subsequently using the thermophoresis effect to deposit it onto the fiber ferrule. The SA is integrated into a ring cavity EDFL, which uses a 3-m-long MetroGain Type-12 erbium-doped fiber (EDF) as the gain medium. The EDFL has a continuous-wave (CW) lasing threshold at a pump power of ~9 mW, with Q-switching behavior observed at pump powers ~18 mW and above. At the maximum pump power of ~100 mW, the Q-switched pulses generated by the EDFL have a repetition rate and pulsewidth of 61 kHz and 6.6 μs, respectively, along with an average output power of about 3.7 mW. Additionally, at the maximum power, the energy per pulse and peak power of the generated pulses are 61.3 nJ and 9.3 mW, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.