Abstract

AbstractNoise is an environmental pollutant with recognized impacts on the psychological and physiological health of humans. Many porous materials are often limited by low sound absorption over a broad frequency range, delicacy, excessive weight and thickness, poor moisture insulation, high temperature instability, and lack of readiness for high volume commercialization. Herein, an efficient and robust lamella‐structure is reported as an acoustic absorber based on self‐assembled interconnected graphene oxide (GO) sheets supported by a grill‐shaped melamine skeleton. The fabricated lamella structure exhibits ≈60.3% enhancement over a broad absorption band between 128 and 4000 Hz (≈100% at lower frequencies) compared to the melamine foam. The enhanced acoustic absorption is identified to be structure dependent regardless of the density. The sound dissipation in the open‐celled structure is due to the viscous and thermal losses, whereas it is predominantly tortuosity in wave propagation and enhanced surface area for the GO‐based lamella. In addition to the enhanced acoustic absorption and mechanical robustness, the lamella provides superior structural functionality over many conventional sound absorbers including, moisture/mist insulation and fire retardancy. The fabrication of this new sound absorber is inexpensive, scalable and can be adapted for extensive applications in commercial, residential, and industrial building structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.