Abstract

In this work, a reusable graphene oxide (GO) based dispersive-solid phase extraction (d-SPE) was synthesized and used for the analysis of trace ampicillin sodium (AMP) and clindamycin hydrochloride (CLI) in water samples followed by high performance liquid chromatography-UV detection (HPLC-UV). Batch experiments were conducted to investigate the effects of pH and volume of the sample solution, contact time, adsorption isotherms, temperature, and desorption conditions. The maximum adsorption capacities of AMP and CLI on GO nanosheets were found to be 33.33 mg g-1 and 47 mg g-1, respectively. The adsorption isotherm data can be well fitted by Temkin (AMP and CLI) and Freundlich (AMP), and the adsorption process followed the pseudo-second-order model. The thermodynamic parameters were calculated, indicated that the adsorption process of both analytes were spontaneous and exothermic. In addition, the d-SPE following HPLC analyses showed good linearity in the range of 0.5-200 ng mL-1 (R2= 0.999) for AMP and 1-200 ng mL-1 (R2= 0.999) for CLI, with LOD of 0.04 and 0.24 ng mL-1 for AMP and CLI, respectively. The percent of extraction recoveries, intra and inter-day precisions (expressed as RSD %, n = 3) were in the range of 96.4-101.6%, 2.2-3.0, and 3.7-4.7 for AMP as well as 94.2-98.6%, 2.2-3.8, and 3.5-4.6 for CLI, respectively. The preconcentration factor of 20 was achieved for both analytes. From these results, it can be concluded that the validated method is a simple, cost-effective and repeatable method for analysis of AMP and CLI in water samples and provide a new platform for antibiotics decontamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call