Abstract
We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer’s protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π–π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
Highlights
The discovery of graphene and graphene derivatives in the field of nanoscience and nanotechnology has attracted a great deal of research attention, this is because of their wide range of exceptional properties, including electrical, mechanical and thermal properties, to mention a few [1].Molecules 2018, 23, 500; doi:10.3390/molecules23020500 www.mdpi.com/journal/molecules the extent of these properties vary from one graphene derivative to another, the basic properties of the carbon-based materials can be found in all graphene derivatives, this has made the application of the materials to become diverse
The The interactions been of confirmed anddelivery meticulously discussed according to the and GOTSaforementioned is developed based on thehave concept theranostic system (TDS) with therapeutic methods of characterization
A theranostic nanodelivery system that consists of both therapeutic and contrast agents were simultaneously loaded onto graphene oxide (GO) nanosheets for imaging and pharmaceutical applications was successfully prepared
Summary
The discovery of graphene and graphene derivatives in the field of nanoscience and nanotechnology has attracted a great deal of research attention, this is because of their wide range of exceptional properties, including electrical, mechanical and thermal properties, to mention a few [1].Molecules 2018, 23, 500; doi:10.3390/molecules23020500 www.mdpi.com/journal/molecules the extent of these properties vary from one graphene derivative to another, the basic properties of the carbon-based materials can be found in all graphene derivatives, this has made the application of the materials to become diverse. For biomedical applications of the graphene derivatives, such as drug delivery and biosensing, GO is often the favorite amongst the others due to its carboxylic acid structure [4]. GO is a two-dimensional layered nanomaterial with a high surface area to volume ratio. It differs from graphene mainly by its uncharged epoxide (O) and hydroxyl (OH) groups, which are located in the basal plane of the graphene-like nanosheets [4]. This enables them to have hydrogen bonding and other interactions at the layer surface. The aforementioned properties make GO a preferable nanocarrier in biomedicine, especially in drug and gene delivery systems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.