Abstract

As contaminated water increases due to environmental pollution, the need for excellent water treatment is increased, and several studies have reported the polyvinylidene fluoride (PVDF)-based water treatment membranes. However, the PVDF membrane has several problems such as low filtration performance, fouling resistance, and difficulty in precisely controlling the morphology of the pores and hydrophilicity. Therefore, we newly produced a water treatment PVDF membrane containing graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) to improve the filtration performance. Surface properties of the fabricated membrane such as morphology, and size of pores, hydrophilicity, and water flux of the membrane were investigated. Additionally, the performance of these membrane filters was evaluated for free residual chlorine, turbidity, chromaticity, magnesium, sulfate, and particulates class 1 according to drinking water management act criteria, respectively. A performance improvement of at least 108.37% was observed compared to the Pure PVDF filter module and anti-fouling effects due to the functional groups of GO and MWCNTs. These results reveal that proposed membrane can accelerate the development of various water filtration applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.