Abstract

Infertility is a worldwide problem affecting around 48.5 million couples in the word, the male factor being responsible for approximately the 50% of the cases, with a high percentage of unknown causes. For that reason, improving the success of In Vitro Fertilization (IVF) techniques is a primordial aim for researchers working in the reproductive field. Here, by using a mammalian animal model, the bovine, we present an innovative in vitro fertilization system that combines the use of a somatic component, the epithelial oviductal cells, and a carbon-based material, the graphene oxide, with the aim to open new ways in IVF systems design and application.Our results show an increase in the IVF outcomes without harming the blastocyst developmental rate, as well as high modified proteomic and lipidomic profiles of capacitating spermatozoa. Furthermore, we compared the modifications produced by GO with those exerted by the hormone progesterone, finding similar functional effects on sperm capacitation.In conclusion, our results stand out the use of a non-physiological material as graphene oxide in a new and innovative strategy that improves sperm capacitation, conferring them a higher fertilizing competence and thus increasing the in vitro fertilization outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.