Abstract
Metal-insulator-metal-based plasmonic metamaterial absorbers (MIM-PMAs) generate strong localized surface plasmon resonance (LSPR) on their surfaces. Therefore, MIM-PMAs are expected to enhance the absorption of graphene coated on their surfaces. Graphene-coated MIM-PMAs (GMIM-PMAs) were developed and their optical properties were investigated both experimentally and numerically at infrared wavelengths. Significant modification of the absorption of GMIM-PMAs was achieved only in the main LSPR wavelength region, where the insulator is lossless. The enhancement of the absorption of graphene could be maximized by the optimization of the insulator thickness of the MIM-PMAs. The results obtained here are expected to contribute to the development of high-responsivity graphene-based photodetectors and optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Optics Express
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.