Abstract
Objective. There is a growing interest in the use of carbon and its allotropes for microelectrodes in neural probes because of their inertness, long-term electrical and electrochemical stability, and versatility. Building on this interest, we introduce a new electrode material system consisting of an ultra-thin monoatomic layer of graphene (Gr) mechanically supported by a relatively thicker layer of glassy carbon (GC). Approach. Due to its high electrical conductivity and high double-layer capacitance, Gr has impressive electrical and electrochemical properties, two key properties that are useful for neural recording and stimulation applications. However, because of its two-dimensional nature, Gr exhibits a lack of stiffness in the transverse direction and hence almost non-existent flexural and out-of-plane rigidity that will severely limit its wider use. On the other hand, GC is one of carbon’s important allotropes and consists of three-dimensional microstructures of Gr fragments with a natural molecular similarity to Gr. Further, GC has exceptional chemical inertness, good electrical properties, high electrochemical stability, purely capacitive charge injection, and fast surface electrokinetics coupled with lithography patternability. This makes GC an ideal candidate for addressing Gr’s lack of out-of-plane rigidity through providing a matching sturdier and robust mechanical backing. Combining the strengths of these two allotropes of carbon, we introduce a new neural probe that consists of ∼1 nm thick layer of patterned Gr microelectrodes supported by another layer of 3–5 μm thick patterned GC. Main results. We present the fabrication technology for the new Gr on GC (graphene on glassy carbon) microelectrodes and the accompanying pattern transfer technology on flexible substrate and report on the bond between these two allotropes of carbon through FTIR, surface morphology through SEM, topography through atomic force microscopy, and microstructure imaging through scanning transmission electron microscopy. A long-term (18 weeks) in vivo study of the use of these Gr on GC microelectrodes assessed the quality of the electrocorticography-based neural signal recording and stimulation through electrophysiological measurements. The probes were demonstrated to be functionally and structurally stable over the 18 week period with minimal glial response—the longest reported so far for Gr-based microelectrodes. Significance. The Gr on GC microelectrodes presented here offers a compelling case for expanding the potentials of Gr-based technology in the broad areas of neural probes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.