Abstract

We investigate the nonlinear optical features of a graphene sheet embedded in an active cavity and we show that, when tuned near its lasing threshold, the cavity is able to isolate the spatially localized graphene nonlinearity thus producing a very strong nonlinear device response with multi-valued features. As opposed to standard situations where the small thickness of the graphene sheet hampers its remarkable nonlinear optical properties to be exploited, in our scheme the strong nonlinear optical regime is mainly triggered by the very intrinsic planar localization of graphene nonlinearity. The proposed strategy for exploiting graphene nonlinearity through its unleashing could open novel routes for conceiving ultra-efficient nonlinear photonic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.